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Course 3: Structuring Machine Learning Projects

***************************************
Course 3: Structuring Machine Learning Projects
***************************************
In this course we'll learn how to build a successful machine learning project. If you aspire to be a
technical leader in AI, and know how to set direction for your team's work, this course will show
you how.
    Much of this content has never been taught elsewhere, and is drawn from my experience
building and shipping many deep learning products. This course also has two "flight simulators"
that let you practice decision-making as a machine learning project leader. This provides "industry
experience" that you might otherwise get only after years of ML work experience.
After 2 weeks, you will:
- Understand how to diagnose errors in a machine learning system, and
- Be able to prioritize the most promising directions for reducing error
- Understand complex ML settings, such as mismatched training/test sets, and comparing to
and/or surpassing human-level performance
- Know how to apply end-to-end learning, transfer learning, and multi-task learning

Week 1: ML Strategy (1)
Learning Objectives

Understand why Machine Learning strategy is important
Apply satisfying and optimizing metrics to set up your goal for ML projects
Choose a correct train/dev/test split of your dataset
Understand how to define human-level performance
Use human-level perform to define your key priorities in ML projects
Take the correct ML Strategic decision based on observations of performances and dataset

Introduction to ML Strategy
Why ML Strategy
    In this course we'll learn how to much more quickly and efficiently get your machine learning
systems working. So, what is machine learning strategy. Let's start with a motivating example.
Let's say you are working on your cat classifier. And after working it for some time, you've gotten
your system to have 90% accuracy, but this isn't good enough for your application. You might
then have a lot of ideas as to how to improve your system. For example, you might think well let's
collect more data, more training data. Or you might say, maybe your training set isn't diverse
enough yet, you should collect images of cats in more diverse poses, or maybe a more diverse set
of negative examples. Well maybe you want to train the algorithm longer with gradient descent.
Or maybe you want to try a different optimization algorithm, like the Adam optimization
algorithm. Or maybe trying a bigger network or a smaller network or maybe you want to try to
dropout or maybe L2 regularization. Or maybe you want to change the network architecture
such as changing activation functions, changing the number of hidden units and so on and so on.
When trying to improve a deep learning system, you often have a lot of ideas or things you could
try. And the problem is that if you choose poorly, it is entirely possible that you end up spending
six months charging in some direction only to realize after six months that that didn't do any
good. For example, I've seen some teams spend literally six months collecting more data only to
realize after six months that it barely improved the performance of their system. So, assuming
you don't have six months to waste on your problem, won't it be nice if you had quick and
effective ways to figure out which of all of these ideas and maybe even other ideas, are worth
pursuing and which ones you can safely discard. So what I hope to do in this course is teach you a



number of strategies, that is, ways of analyzing a machine learning problem that will point you in
the direction of the most promising things to try. What I will do in this course also is share with
you a number of lessons I've learned through building and shipping large number of deep learning
products. And I think these materials are actually quite unique to this course. I don't see a lot of
these ideas being taught in universities' deep learning courses for example. It turns out also that
machine learning strategy is changing in the era of deep learning because the things you could do
are now different with deep learning algorithms than with previous generation of machine learning
algorithms. I hope that these ideas will help you become much more effective at getting your deep
learning systems to work.

Orthogonalization
    One of the challenges with building machine learning systems is that there's so many things
you could try, so many things you could change. Including, for example, so many
hyperparameters you could tune. One of the things I've noticed is about the most effective
machine learning people is they're very clear-eyed about what to tune in order to try to achieve
one effect. This is a process we call orthogonalization. Let me tell you what I mean.
    For a supervised learning system to do well, you usually need to tune the knobs of your system
to make sure that four things hold true. First, is that you usually have to make sure that you're at
least doing well on the training set. So performance on the training set needs to pass some
acceptability assessment. For some applications, this might mean doing comparably to human
level performance. But this will depend on your application, and we'll talk more about comparing
to human level performance next week.
But after doing well on the training sets, you then hope that this leads to also doing well on the
dev set. And you then hope that this also does well on the test set. And finally, you hope that
doing well on the test set on the cost function results in your system performing in the real world.
So you hope that this resolves in happy cat picture app users, for example. So to relate back to
the TV tuning example, if the picture of your TV was either too wide or too narrow, you wanted
one knob to tune in order to adjust that. You don't want to have to carefully adjust five different
knobs, which also affect different things. You want one knob to just affect the width of your TV
image. So in a similar way, if your algorithm is not fitting the training set well on the cost function,
you want one knob, yes, that's my attempt to draw a knob. Or maybe one specific set of knobs
that you can use, to make sure you can tune your algorithm to make it fit well on the training set.
So the knobs you use to tune this are, you might train a bigger network or you might switch to a
better optimization algorithm, like the Adam optimization algorithm, and so on. In contrast, if
you find that the algorithm is not fitting the dev set well, then there's a separate set of knobs. Yes,
that's my not very artistic rendering of another knob, you want to have a distinct set of knobs to
try. So for example, if your algorithm is not doing well on the dev set, it's doing well on the
training set but not on the dev set, then you have a set of knobs around regularization that you
can use to try to make it satisfy the second criteria. So the analogy is, now that you've tuned the
width of your TV set, if the height of the image isn't quite right, then you want a different knob in
order to tune the height of the TV image. And you want to do this hopefully without affecting the
width of your TV image too much. And getting a bigger training set would be another knob you
could use, that helps your learning algorithm generalize better to the dev set. Now, having
adjusted the width and height of your TV image, well, what if it doesn't meet the third criteria?
What if you do well on the dev set but not on the test set? If that happens, then the knob you
tune is, you probably want to get a bigger dev set. Because if it does well on the dev set but not
the test set, it probably means you've overtuned to your dev set, and you need to go
back and find a bigger dev set And finally, if it does well on the test set, but it isn't delivering to
you a happy cat picture app user, then what that means is that you want to go back and change
either the dev set or the cost function. Because if doing well on the test set according to some
cost function doesn't correspond to your algorithm doing what you need it to do in the real world,
then it means that either your dev test set distribution isn't set correctly, or your cost function
isn't measuring the right thing. 



So Orthogonalization or orthogonality is a system design property that assures that modifying an
instruction or a component of an algorithm will not create or propagate side effects to other
components of the system. It becomes easier to verify the algorithms independently from one
another, it reduces testing and development time. When a supervised learning system is design,
these are the 4 assumptions that needs to be true and orthogonal.

1. Fit training set well in cost function
- If it doesn’t fit well, the use of a bigger neural network or switching to a better optimization
algorithm might help.
2. Fit development set well on cost function
- If it doesn’t fit well, regularization or using bigger training set might help.
3. Fit test set well on cost function
- If it doesn’t fit well, the use of a bigger development set might help
4. Performs well in real world
- If it doesn’t perform well, the development test set is not set correctly or the cost function is
not evaluating the right thing

Setting up your goal
Single number evaluation metric
    Whether you're tuning hyperparameters, or trying out different ideas for learning algorithms, or
just trying out different options for building your machine learning system. You'll find that your
progress will be much faster if you have a single real number evaluation metric that lets you
quickly tell if the new thing you just tried is working better or worse than your last idea. So when
teams are starting on a machine learning project, I often recommend that you set up a single real
number evaluation metric for your problem. Let's look at an example.
    You've heard me say before that applied machine learning is a very empirical process. We often
have an idea, code it up, run the experiment to see how it did, and then use the outcome of the
experiment to refine your ideas. And then keep going around this loop as you keep on improving
your algorithm. So let's say for your classifier, you had previously built some classifier A. And by
changing the hyperparameters and the training sets or some other thing, you've now trained a
new classifier, B. So one reasonable way to evaluate the performance of your classifiers is to look
at its precision and recall. The exact details of what's precision and recall don't matter too much
for this example. But briefly, the definition of precision is, of the examples that your classifier
recognizes as cats, What percentage actually are cats? So if classifier A has 95% precision, this
means that when classifier A says something is a cat, there's a 95% chance it really is a cat. And
recall is, of all the images that really are cats, what percentage were correctly recognized by
your classifier? So what percentage of actual cats, Are correctly recognized?



So if classifier A is 90% recall, this means that of all of the images in, say, your dev sets that
really are cats, classifier A accurately pulled out 90% of them. So don't worry too much about the
definitions of precision and recall. It turns out that there's often a tradeoff between
precision and recall, and you care about both. You want that, when the classifier says
something is a cat, there's a high chance it really is a cat. But of all the images that are cats, you
also want it to pull a large fraction of them as cats. So it might be reasonable to try to evaluate
the classifiers in terms of its precision and its recall. The problem with using precision recall as
your evaluation metric is that if classifier A does better on recall, which it does in the diagram
above, the classifier B does better on precision, then you're not sure which classifier is better and
if you're trying out a lot of different ideas, a lot of different hyperparameters, you want to rather
quickly try out not just two classifiers, but maybe a dozen classifiers and quickly pick out the,
quote, best ones, so you can keep on iterating from there and with two evaluation metrics, it is
difficult to know how to quickly pick one of the two or quickly pick one of the ten.
    So what is recommended is rather than using two numbers, precision and recall, to pick a
classifier, you just have to find a new evaluation metric that combines precision and recall. In the
machine learning literature, the standard way to combine precision and recall is something called
an F1 score. And the details of F1 score aren't too important, but informally, you can think of this
as the average of precision, P, and recall, R. 
Check below diagram for details on F1 score.



 
So what we have learned in this section is that having a single number evaluation metric can
really improve your efficiency or the efficiency of your tea, in making decisions. 



Satisficing and optimistic metric
    It's not always easy to combine all the things you care about into a single row number
evaluation metric. In those cases I've found it sometimes useful to set up satisficing as well as
optimizing matrix. Let me show you what I mean. Let's say that you've decided you care about
the classification accuracy of your cat's classifier, this could have been F1 score or some other
measure of accuracy, but let's say that in addition to accuracy you also care about the running
time. 

    So how long it takes to classify an image and classifier A takes 80 milliseconds, B takes 95
milliseconds, and C takes 1,500 milliseconds, that's 1.5 seconds to classify an image. So one thing
you could do is combine accuracy and running time into an overall evaluation metric. And so the
costs such as maybe the overall cost is accuracy minus 0.5 times running time. But maybe it
seems a bit artificial to combine accuracy and running time using a formula like this, like a linear
weighted sum of these two things. So here's something else you could do instead which is
that you might want to choose a classifier that maximizes accuracy but subject to that
the running time, that is the time it takes to classify an image, that that has to be less
than or equal to 100 milliseconds. So in this case we would say that accuracy is an
optimizing metric because you want to maximize accuracy. You want to do as well as
possible on accuracy but that running time is what we call a satisficing metric. Meaning that it
just has to be good enough, it just needs to be less than 100 milliseconds and beyond that you
don't really care, or at least you don't care that much. So this will be a pretty reasonable way to
trade off or to put together accuracy as well as running time. And it may be the case that so long
as the running time is less that 100 milliseconds, your users won't care that much whether it's 100
milliseconds or 50 milliseconds or even faster. And by defining optimizing as well as satisficing
matrix, this gives you a clear way to pick the, quote, best classifier, which in this case would be
classifier B because of all the ones with a running time better than 100 milliseconds it has the best
accuracy. 



Here's another example. Let's say you're building a system to detect wake words, also called
trigger words. So this refers to the voice control devices like the Amazon Echo where you wake up
by saying Alexa or some Google devices which you wake up by saying okay Google or some Apple
devices which you wake up by saying Hey Siri. So these are the wake words you use to tell one of
these voice control devices to wake up and listen to something you want to say so you might care
about the accuracy of your trigger word detection system. So when someone says one of these
trigger words, how likely are you to actually wake up your device, and you might also care about
the number of false positives. So when no one actually said this trigger word, how often does it
randomly wake up? So in this case maybe one reasonable way of combining these two evaluation
matrix might be to maximize accuracy, so when someone says one of the trigger words, maximize
the chance that your device wakes up. And subject to that, you have at most one false positive
every 24 hours of operation, right? So that your device randomly wakes up only once per day on
average when no one is actually talking to it. So in this case accuracy is the optimizing metric and
a number of false positives every 24 hours is the satisficing metric where you'd be satisfied so
long as there is at most one false positive every 24 hours. 
    To summarize, if there are multiple things you care about by say there's one as the optimizing
metric that you want to do as well as possible on and one or more as satisficing metrics were
you'll be satisfice. Almost it does better than some threshold you can now have an almost
automatic way of quickly looking at multiple core size and picking the, quote, best one. Now these
evaluation matrix must be evaluated or calculated on a training set or a development set or
maybe on the test set. So one of the things you also need to do is set up training, dev or
development, as well as test sets. 

Train/dev/test distributions
    The way you set up your training dev, or development sets and test sets, can have a huge
impact on how rapidly you or your team can make progress on building machine learning



application. The same teams, even teams in very large companies, set up these data sets in ways
that really slows down, rather than speeds up, the progress of the team. Let's take a look at how
you can set up these data sets to maximize your team's efficiency. In this section, I want to focus
on how you set up your dev and test sets. So, that dev set is also called the development set, or
sometimes called the hold out cross validation set. And, workflow in machine learning is that you
try a lot of ideas, train up different models on the training set, and then use the dev set to
evaluate the different ideas and pick one. And, keep innovating to improve dev set performance
until, finally, you have one clause that you're happy with that you then evaluate on your test set.
Now, let's say, by way of example, that you're building a cat classifier, and you are operating in
these regions: in the U.S, U.K, other European countries, South America, India, China, other Asian
countries, and Australia. So, how do you set up your dev set and your test set? Well, one way you
could do so is to pick four of these regions (check diagram below). I'm going to use these four but
it could be four randomly chosen regions. And say, that data from these four regions will go into
the dev set. And, the other four regions, I'm going to use these four, could be randomly chosen
four as well, that those will go into the test set.

    It turns out, this is a very bad idea because in this example, your dev and test sets come from
different distributions. I would, instead, recommend that you find a way to make your dev and
test sets come from the same distribution. So, here's what I mean. One picture to keep in
mind is that, I think, setting up your dev set, plus, your single role number evaluation metric,
that's like placing a target and telling your team where you think is the bull's eye you want to aim
at. Because, what happen once you've established that dev set and the metric is that, the team
can innovate very quickly, try different ideas, run experiments and very quickly use the dev set
and the metric to evaluate crossfires and try to pick the best one. So, machine learning teams are
often very good at shooting different arrows into targets and innovating to get closer and closer to
hitting the bullseye. So, doing well on your metric on your dev sets. And, the problem with how
we've set up the dev and test sets in the example on the left is that, your team might spend
months innovating to do well on the dev set only to realize that, when you finally go to test them
on the test set, that data from these four countries or these four regions at the bottom, might be
very different than the regions in your dev set. So, you might have a nasty surprise and realize
that, all the months of work you spent optimizing to the dev set, is not giving you good
performance on the test set. So, having dev and test sets from different distributions is like



setting a target, having your team spend months trying to aim closer and closer to bull's
eye, only to realize after months of work that, you'll say, "Oh wait, to test it, I'm going to move
target over here." And, the team might say, "Well, why did you make us spend months optimizing
for a different bull's eye when suddenly, you can move the bull's eye to a different location
somewhere else?" So, to avoid this, what I recommend instead is that, you take all this
randomly shuffled data into the dev and test set. So that, both the dev and test sets
have data from all eight regions and that the dev and test sets really come from the
same distribution, which is the distribution of all of your data mixed together. Here's
another example. This is a, actually, true story but with some details changed. So, I know a
machine learning team that actually spent several months optimizing on a dev set which was
comprised of loan approvals for medium income zip codes. So, the specific machine learning
problem was, "Given an input X about a loan application, can you predict why and which is,
whether or not, they'll repay the loan?" So, this helps you decide whether or not to approve a
loan. And so, the dev set came from loan applications. They came from medium income zip codes.
Zip codes is what we call postal codes in the United States. But, after working on this for a few
months, the team then, suddenly decided to test this on data from low income zip codes or low
income postal codes. And, of course, the distributional data for medium income and low income
zip codes is very different. And, the classifier, that they spend so much time optimizing in the
former case, just didn't work well at all on the latter case. And so, this particular team actually
wasted about three months of time and had to go back and really re-do a lot of work. And, what
happened here was, the team spent three months aiming for one target, and then, after three
months, the manager asked, "Oh, how are you doing on hitting this other target?" This is a totally
different location. And, it just was a very frustrating experience for the team. So, what I
recommand for setting up a dev set and test set is, choose a dev set and test set to reflect
data you expect to get in future and consider important to do well on. And, in particular,
the dev set and the test set here, should come from the same distribution. So, whatever type of
data you expect to get in the future, and once you do well on, try to get data that looks like that.
And, whatever that data is, put it into both your dev set and your test set. Because that way,
you're putting the target where you actually want to hit and you're having the team innovate very
efficiently to hitting that same target, hopefully, the same targets well.
     Important take away from this section is that, setting up the dev set, as well as the validation
metric, is really defining what target you want to aim at. And hopefully, by setting the dev set and
the test set to the same distribution, you're really aiming at whatever target you hope your
machine learning team will hit. The way you choose your training set will affect how well
you can actually hit that target but, we can talk about that separately in upcoming section. 

Size of the dev and test sets
     In the last section, we saw how our dev and test sets should come from the same distribution, but how long
should they be? The guidelines to help set up your dev and test sets are changing in the Deep Learning era.
Let's take a look at some best practices. You might have heard of the rule of thumb in machine learning of
taking all the data you have and using a 70/30 split into a train and test set, or have you had to set up train
dev and test sets maybe, you would use a 60% training and 20% dev and 20% tests. In earlier eras of
machine learning, this was pretty reasonable, especially back when data set sizes were just smaller. So if you
had a hundred examples in total, these 70/30 or 60/20/20 rule of thumb would be pretty reasonable. If you
had thousand examples, maybe if you had ten thousand examples, these things are not unreasonable. But in
the modern machine learning era, we are now used to working with much larger data set sizes. So let's say
you have a million training examples, it might be quite reasonable to set up your data so that you have 98% in
the training set, 1% dev, and 1% test because if you have a million examples, then 1% of that, is 10,000
examples, and that might be plenty enough for a dev set or for a test set. So, in the modern Deep Learning era
where sometimes we have much larger data sets, It's quite reasonable to use a much smaller than 20 or 30%
of your data for a dev set or a test set. And because Deep Learning algorithms have such a huge hunger for
data, I'm seeing that, the problems we have large data sets that have much larger fraction of it goes into the
training set. So, how about the test set? Remember the purpose of your test set is that, after you finish
developing a system, the test set helps evaluate how good your final system is. The guideline is, to set
your test set to big enough to give high confidence in the overall performance of your system. So, unless you
need to have a very accurate measure of how well your final system is performing, maybe you don't need
millions and millions of examples in a test set, and maybe for your application if you think that having 10,000



examples gives you enough confidence to find the performance on maybe 100,000 or whatever it is, that might
be enough. And this could be much less than, say 30% of the overall data set, depend on how much data you
have. For some applications, maybe you don't need a high confidence in the overall performance of your final
system. Maybe all you need is a train and dev set, And I think, not having a test set might be okay. In fact,
what sometimes happened was, people were talking about using train test splits but what they were actually
doing was iterating on the test set. So rather than test set, what they had was a train dev split and no test set.
If you're actually tuning to this set, to this dev set and this test set, It's better to call the dev set. Although I
think in the history of machine learning, not everyone has been completely clean and completely records of
about calling the dev set when it really should be treated as test set. But, if all you care about is having some
data that you train on, and having some data to tune to, and you're just going to shake the final system and
not worry too much about how it was actually doing, I think it will be healthy and just call the train dev set and
acknowledge that you have no test set. This a bit unusual? I'm definitely not recommending not having a test
set when building a system. I do find it reassuring to have a separate test set you can use to get an unbiased
estimate of how I was doing before you shift it, but if you have a very large dev set so that you think you won't
overfit the dev set too badly. Maybe it's not totally unreasonable to just have a train dev set, although it's not
what I usually recommend.
     So to summarize, in the era of big data, I think the old rule of thumb of a 70/30 is that, that no longer
applies. And the trend has been to use more data for training and less for dev and test, especially when you
have a very large data sets. And the rule of thumb is really to try to set the dev set to big enough for its
purpose, which helps you evaluate different ideas and the purpose of test set is to help you evaluate your final
cost. You just have to set your test set big enough for that purpose, and that could be much less than 30% of
the data. Check below diagram for summary:



When to change dev/test sets and metrics
     You've seen how set to have a dev set and evaluation metric is like placing a target somewhere for your
team to aim at. But sometimes partway through a project you might realize you put your target in the wrong
place. In that case you should move your target. Let's take a look at an example. Let's say you build a cat
classifier to try to find lots of pictures of cats to show to your cat loving users and the metric that you decided
to use is classification error. So algorithms A and B have, respectively, 3 percent error and 5 percent error, so it
seems like Algorithm A is doing better. But let's say you try out these algorithms, you look at these algorithms
and Algorithm A, for some reason, is letting through a lot of the pornographic images. So if you shift Algorithm
A the users would see more cat images because you'll see 3 percent error and identify cats, but it also shows
the users some pornographic images which is totally unacceptable both for your company, as well as for your
users. In contrast, Algorithm B has 5 percent error so this classifies fewer images but it doesn't have
pornographic images. So from your company's point of view, as well as from a user acceptance point of view,
Algorithm B is actually a much better algorithm because it's not letting through any pornographic images. So,
what has happened in this example is that Algorithm A is doing better on evaluation metric. It's getting 3
percent error but it is actually a worse algorithm. In this case, the evaluation metric plus the dev set prefers
Algorithm A because they're saying, look, Algorithm A has lower error which is the metric you're using but you
and your users prefer Algorithm B because it's not letting through pornographic images. So when this happens,
when your evaluation metric is no longer correctly rank ordering preferences between algorithms, in this case
is mispredicting that Algorithm A is a better algorithm, then that's a sign that you should change your
evaluation metric or perhaps your development set or test set.



     The problem with this evaluation metric is that they treat pornographic and non-pornographic images
equally but you really want your classifier to not mislabel pornographic images, like maybe you recognize a
pornographic image in cat image and therefore show it to unsuspecting user, therefore very unhappy with
unexpectedly seeing porn. One way to change this evaluation metric would be if you add the weight term.
     Here, we call this w(i) where w(i) is going to be equal to 1 if x(i) is non-porn and maybe 10 or maybe even
large number like a 100 if x(i) is porn. So this way you're giving a much larger weight to examples that are
pornographic so that the error term goes up much more if the algorithm makes a mistake on classifying a
pornographic image as a cat image. In this example you giving 10 times bigger weights to classify
pornographic images correctly. If you want this normalization constant, technically this becomes sum over i of
w(i), so then this error would still be between zero and one.
     Take away is, if you find that evaluation metric is not giving the correct rank order preference for what is
actually better algorithm, then there's a time to think about defining a new evaluation metric. And this is just
one possible way that you could define an evaluation metric. The goal of the evaluation metric is accurately
tell you, given two classifiers, which one is better for your application.
     One thing you might notice is that so far we've only talked about how to define a metric to evaluate
classifiers. That is, we've defined an evaluation metric that helps us better rank order classifiers when they are
performing at varying levels in terms of streaming of porn. And this is actually an example of an
orthogonalization where I think you should take a machine learning problem and break it into distinct steps.
     The overall guideline is if your current metric and data you are evaluating on doesn't correspond to doing
well on what you actually care about, then change your metrics and/or your dev/test set to better capture
what you need your algorithm to actually do well on. Having an evaluation metric and the dev set allows you to
much more quickly make decisions about is Algorithm A or Algorithm B better. It really speeds up how quickly
you and your team can iterate. So my recommendation is, even if you can't define the perfect evaluation
metric and dev set, just set something up quickly and use that to drive the speed of your team iterating. Here
is the summary diagram:



Comparing to human level performance
Why human-level performance?
    In the last few years, a lot more machine learning teams have been talking about comparing the machine
learning systems to human level performance. Why is this? I think there are two main reasons. First is that
because of advances in deep learning, machine learning algorithms are suddenly working much better and so it
has become much more feasible in a lot of application areas for machine learning algorithms to actually
become competitive with human-level performance. Second, it turns out that the workflow of designing and
building a machine learning system, the workflow is much more efficient when you're trying to do something
that humans can also do. So in those settings, it becomes natural to talk about comparing, or trying to mimic
human-level performance. Let's see a couple examples of what this means. I've seen on a lot of machine
learning tasks that as you work on a problem over time, so the x-axis, time, this could be many months or
even many years over which some team or some research community is working on a problem. Progress tends
to be relatively rapid as you approach human level performance. But then after a while, the algorithm
surpasses human-level performance and then progress and accuracy actually slows down. And maybe it keeps
getting better but after surpassing human level performance it can still get better, but performance, the slope



of how rapid the accuracy's going up, often that slows down. And the hope is it achieves some theoretical
optimum level of performance.
and over time, as you keep training the algorithm, maybe bigger and bigger models on more and more data,
the performance approaches but never surpasses some theoretical limit, which is called the Bayes optimal
error. So Bayes optimal error, think of this as the best possible error.

and that's just the way for any function mapping from x to y to surpass a certain level of accuracy.    
     So for example, for speech recognition, if x is audio clips, some audio is just so noisy it is impossible to tell
what is in the correct transcription. So the perfect error may not be 100%. Or for cat recognition. Maybe some
images are so blurry, that it is just impossible for anyone or anything to tell whether or not there's a cat in that
picture. So, the perfect level of accuracy may not be 100%. And Bayes optimal error, or Bayesian optimal error,
or sometimes Bayes error for short, is the very best theoretical function for mapping from x to y. That can
never be surpassed.
     So it should be no surprise that this purple line, no matter how many years you work on a problem you can
never surpass Bayes error, Bayes optimal error. And it turns out that progress is often quite fast until you
surpass human level performance and it sometimes slows down after you surpass human level performance.
And I think there are two reasons for that, for why progress often slows down when you surpass human level
performance. One reason is that human level performance is for many tasks not that far from Bayes' optimal
error. People are very good at looking at images and telling if there's a cat or listening to audio and transcribing



it. So, by the time you surpass human level performance maybe there's not that much head room to still
improve.
But the second reason is that so long as your performance is worse than human level performance, then there
are actually certain tools you could use to improve performance that are harder to use once you've surpassed
human level performance. So here's what I mean. For tasks that humans are quite good at, and this includes
looking at pictures and recognizing things, or listening to audio, or reading language, really natural data tasks
humans tend to be very good at. For tasks that humans are good at, so long as your machine learning
algorithm is still worse than the human, you can get labeled data from humans. That is you can ask people,
ask higher humans, to label examples for you so that you can have more data to feed your learning algorithm.
Something we'll talk about next week is manual error analysis. But so long as humans are still performing
better than any other algorithm, you can ask people to look at examples that your algorithm's getting wrong,
and try to gain insight in terms of why a person got it right but the algorithm got it wrong. 

Avoidable bias
     We talked about how you want your learning algorithm to do well on the training set but sometimes you
don't actually want to do too well and knowing what human level performance is, can tell you exactly how well
but not too well you want your algorithm to do on the training set. Let me show you what I mean. We have
used Cat classification a lot and given a picture, let's say humans have near-perfect accuracy so the human
level error is one percent. In that case, if your learning algorithm achieves 8 percent training error and 10
percent dev error, then maybe you wanted to do better on the training set. So the fact that there's a huge gap
between how well your algorithm does on your training set versus how humans do shows that your algorithm
isn't even fitting the training set well. 

    So in terms of tools to reduce bias or variance, in this case I would say focus on reducing bias. So you want
to do things like train a bigger neural network or run training set longer, just try to do better on the training
set. But now let's look at the same training error and dev error and imagine that human level performance was
not 1%. So this copy is over but you know in a different application or maybe on a different data set, let's say
that human level error is actually 7.5%. Maybe the images in your data set are so blurry that even humans
can't tell whether there's a cat in this picture. This example is maybe slightly contrived because humans are
actually very good at looking at pictures and telling if there's a cat in it or not. But for the sake of this example,
let's say your data sets images are so blurry or so low resolution that even humans get 7.5% error. In this
case, even though your training error and dev error are the same as the other example, you see that maybe
you're actually doing just fine on the training set. It's doing only a little bit worse than human level
performance. And in this second example, you would maybe want to focus on reducing this component,
reducing the variance in your learning algorithm. So you might try regularization to try to bring your dev error
closer to your training error for example. So in the earlier courses discussion on bias and variance, we were
mainly assuming that there were tasks where Bayes error is nearly zero. So to explain what just happened
here, for our Cat classification example, think of human level error as a proxy or as a estimate for Bayes error
or for Bayes optimal error. And for computer vision tasks, this is a pretty reasonable proxy because humans
are actually very good at computer vision and so whatever a human can do is maybe not too far from Bayes
error. By definition, human level error is worse than Bayes error because nothing could be better than Bayes
error but human level error might not be too far from Bayes error. So the surprising thing we saw here is that
depending on what human level error is or really this is really approximately Bayes error or so we assume it to
be, but depending on what we think is achievable, with the same training error and dev error in these two
cases, we decided to focus on bias reduction tactics or on variance reduction tactics. And what happened is in
the example on the left, 8% training error is really high when you think you could get it down to 1% and so
bias reduction tactics could help you do that. Whereas in the example on the right, if you think that Bayes error
is 7.5% and here we're using human level error as an estimate or as a proxy for Bayes error, but you think
that Bayes error is close to seven point five percent then you know there's not that much headroom for
reducing your training error further down. You don't really want it to be that much better than 7.5% because
you could achieve that only by maybe starting to offer further training so, and instead, there's much more
room for improvement in terms of taking this 2% gap and trying to reduce that by using variance reduction
techniques such as regularization or maybe getting more training data. So to give these things a couple of
names, this is not widely used terminology but I found this useful terminology and a useful way of thinking
about it, which is I'm going to call the difference between Bayes error or approximation of Bayes error and the
training error to be the avoidable bias. So what you want is maybe keep improving your training performance
until you get down to Bayes error but you don't actually want to do better than Bayes error. You can't actually
do better than Bayes error unless you're overfitting. And this, the difference between your training area and
the dev error, there's a measure still of the variance problem of your algorithm. And the term avoidable bias
acknowledges that there's some bias or some minimum level of error that you just cannot get below which is
that if Bayes error is 7.5%, you don't actually want to get below that level of error. So rather than saying that



if you're training error is 8%, then the 8% is a measure of bias in this example, you're saying that
the avoidable bias is maybe 0.5% or 0.5% is a measure of the avoidable bias whereas 2% is a
measure of the variance and so there's much more room in reducing this 2% than in reducing this
0.5%. Whereas in contrast in the example on the left, this 7% is a measure of the avoidable bias,
whereas 2% is a measure of how much variance you have. And so in this example on the left, there's
much more potential in focusing on reducing that avoidable bias. So in this example, understanding human
level error, understanding your estimate of Bayes error really causes you in different scenarios to focus on
different tactics, whether bias avoidance tactics or variance avoidance tactics. There's quite a lot more nuance
in how you factor in human level performance into how you make decisions in choosing what to focus on.

 

Understanding human-level performance
    The term human-level performance is sometimes used casually in research articles. But let me
show you how we can define it a bit more precisely. And in particular, use the definition of the
phrase, human-level performance, that is most useful for helping you drive progress in your
machine learning project. So remember from our last section that one of the uses of this phrase,
human-level error, is that it gives us a way of estimating Bayes error. What is the best possible
error any function could, either now or in the future, ever, ever achieve? So bearing that in mind,
let's look at a medical image classification example. Let's say that you want to look at a radiology
image like this, and make a diagnosis classification decision and suppose that a typical human,



untrained human, achieves 3% error on this task. A typical doctor, maybe a typical radiologist
doctor, achieves 1% error. An experienced doctor does even better, 0.7% error. And a team of
experienced doctors, that is if you get a team of experienced doctors and have them all look at the
image and discuss and debate the image, together their consensus opinion achieves 0.5% error.
So the question I want to pose to you is, how should you define human-level error? Is human-
level error 3%, 1%, 0.7% or 0.5%? 

    One of the most useful ways to think of human error is as a proxy or an estimate for Bayes
error. Which is if you want a proxy or an estimate for Bayes error, then given that a team of
experienced doctors discussing and debating can achieve 0.5% error, we know that Bayes error is
less than equal to 0.5%. So because some system, team of these doctors can achieve 0.5% error,
so by definition, this directly, optimal error has got to be 0.5% or lower. We don't know how much
better it is, maybe there's a even larger team of even more experienced doctors who could do
even better, so maybe it's even a little bit better than 0.5%. But we know the optimal error cannot
be higher than 0.5%. So what I would do in this setting is use 0.5% as our estimate for Bayes
error. So I would define human-level performance as 0.5%. Now, for the purpose of publishing a
research paper or for the purpose of deploying a system, maybe there's a different definition of
human-level error that you can use which is so long as you surpass the performance of a typical
doctor. That seems like maybe a very useful result if accomplished, and maybe surpassing a single
radiologist, a single doctor's performance might mean the system is good enough to deploy in
some context. So maybe the takeaway from this is to be clear about what your purpose is in
defining the term human-level error. And if it is to show that you can surpass a single human and
therefore argue for deploying your system in some context, maybe this is the appropriate
definition. But if your goal is the proxy for Bayes error, then this is the appropriate definition. Let's
look at an error analysis example.





Surpassing human-level performance
    Lots of teams often find it exciting to surpass human-level performance on the specific
recreational classification task. Let's talk over some of the things you see if you try to accomplish
this yourself. We've discussed before how machine learning progress gets harder as you approach
or even surpass human-level performance. Let's talk over one more example of why that's the
case. Let's say you have a problem where a team of humans discussing and debating achieves
0.5% error, a single human 1% error, and you have an algorithm of 0.6% training error and 0.8%
dev error. So in this case, what is the avoidable bias? So this one is relatively easier to answer,
0.5% is your estimate of base error, so your avoidable bias is, you're not going to use this 1%
number as reference, you can use this difference, so maybe you estimate your avoidable bias is at
least 0.1% and your variance as 0.2%. So there's maybe more to do to reduce your variance than
your avoidable bias perhaps. But now let's take a harder example, let's say, a team of humans and
single human performance, the same as before, but your algorithm gets 0.3% training error, and
0.4% dev error. Now, what is the avoidable bias? It's now actually much harder to answer that. Is
the fact that your training error, 0.3%, does this mean you've over-fitted by 0.2%, or is base
error, actually 0.1%, or maybe is base error 0.2%, or maybe base error is 0.3%? You don't really
know, but based on the information given in this example, you actually don't have enough
information to tell if you should focus on reducing bias or reducing variance in your algorithm. So
that slows down the efficiency where you should make progress. Moreover, if your error is already
better than even a team of humans looking at and discussing and debating the right label, for an
example, then it's just also harder to rely on human intuition to tell your algorithm what are ways
that your algorithm could still improve the performance? So in this example, once you've
surpassed this 0.5% threshold, your options, your ways of making progress on the machine
learning problem are just less clear. It doesn't mean you can't make progress, you might still be
able to make significant progress, but some of the tools you have for pointing you in a clear
direction just don't work as well. 



Now, there are many problems where machine learning significantly surpasses human-level
performance. For example, I think, online advertising, estimating how likely someone is to click on
that. Probably, learning algorithms do that much better today than any human could, or making
product recommendations, recommending movies or books to you. I think that web sites today
can do that much better than maybe even your closest friends can. All logistics predicting how
long will take you to drive from A to B or predicting how long to take a delivery vehicle to drive
from A to B, or trying to predict whether someone will repay a loan, and therefore, whether or not
you should approve a loan offer. All of these are problems where I think today machine learning
far surpasses a single human's performance. Notice something about these four examples. All four
of these examples are actually learning from structured data, where you might have a database of
what has users clicked on, database of proper support for, databases of how long it takes to get
from A to B, database of previous loan applications and their outcomes. And these are not natural
perception problems, so these are not computer vision, or speech recognition, or natural language
processing task. Humans tend to be very good in natural perception task. So it is possible, but it's
just a bit harder for computers to surpass human-level performance on natural perception task. 



And finally, all of these are problems where there are teams that have access to huge amounts of
data. So for example, the best systems for all four of these applications have probably looked at
far more data of that application than any human could possibly look at. And so, that's also made
it relatively easy for a computer to surpass human-level performance. Now, the fact that there's
so much data that computer could examine, so it can petrifies that's called patterns than even the
human mind. Other than these problems, today there are speech recognition systems that can
surpass human-level performance. And there are also some computer vision, some image
recognition tasks, where computers have surpassed human-level performance. But because
humans are very good at this natural perception task, I think it was harder for computers to get
there. And then there are some medical tasks, for example, reading ECGs or diagnosing skin
cancer, or certain narrow radiology task, where computers are getting really good and maybe
surpassing a single human-level performance. And I guess one of the exciting things about recent
advances in deep learning is that even for these tasks we can now surpass human-level
performance in some cases, but it has been a bit harder because humans tend to be very
good at this natural perception task. So surpassing human-level performance is often not
easy, but given enough data there've been lots of deep learning systems have surpassed human-
level performance on a single supervisory problem. So that makes sense for an application you're
working on. 

Improving your model performance
    In previous sections we have learned about You orthogonalization. How to set up your dev
and test sets, human level performance as a proxy for Bayes's error and how to estimate your
avoidable bias and variance. Let's pull it all together into a set of guidelines for how to improve the
performance of your learning algorithm. So, I think getting a supervised learning algorithm to
work well means fundamentally hoping or assuming that you can do two things. First is that you
can fit the training set pretty well and you can think of this as roughly saying that you
can achieve low avoidable bias. And the second thing you're assuming can do well is that
doing well in the training set generalizes pretty well to the dev set or the test set and
this is sort of saying that variance is not too bad. 



How much better do you think you should be trying to do on your training set and then look at the
difference between your dev error and your training error as an estimate. So, it's how much of a
variance problem you have. In other words, how much harder you should be working to make
your performance generalize from the training set to the desk set, that it wasn't trained on
explicitly?
So to whatever extent you want to try to reduce avoidable bias, I would try to apply tactics like
train a bigger model. So, you can just do better on your training sets or train longer. Use a better
optimization algorithm such as momentum or RMS prop, Adam. One of the thing you could try is
to just find a better new NN architecture or hyperparameters and this could include everything
from changing the activation functions or changing the number of layers or hidden do this or you
can try other NN models architectures, such as the recurrent neural network and convolution
neural networks. See below diagram with summary.



Week 2: ML Strategy (2)
Learning Objectives

Understand what multi-task learning and transfer learning are
Recognize bias, variance and data-mismatch by looking at the performances of your
algorithm on train/dev/test sets

Error Analysis
Carrying out error analysis
    If you're trying to get a learning algorithm to do a task that humans can do and if your learning
algorithm is not yet at the performance of a human. Then manually examining mistakes that your



algorithm is making, can give you insights into what to do next. This process is called error
analysis. Let's start with an example. Let's say you're working on your cat classifier, and you've
achieved 90% accuracy, or equivalently 10% error, on your dev set. And let's say this is much
worse than you're hoping to do. Maybe one of your teammates looks at some of the examples that
the algorithm is misclassifying, and notices that it is miscategorizing some dogs as cats. And if you
look at these two dogs, maybe they look a little bit like a cat, at least at first glance. So maybe
your teammate comes to you with a proposal for how to make the algorithm do better, specifically
on dogs, right? You can imagine building a focus effort, maybe to collect more dog pictures, or
maybe to design features specific to dogs, or something. In order to make your cat classifier do
better on dogs, so it stops misrecognizing these dogs as cats. So the question is, should you go
ahead and start a project focus on the dog problem?
There could be several months of works you could do in order to make your algorithm make few
mistakes on dog pictures. So is that worth your effort? Well, rather than spending a few months
doing this, only to risk finding out at the end that it wasn't that helpful. Here's an error analysis
procedure that can let you very quickly tell whether or not this could be worth your
effort. Here's what I recommend you do. First, get about, say 100 mislabeled dev set examples,
then examine them manually. Just count them up one at a time, to see how many of these
mislabeled examples in your dev set are actually pictures of dogs. Now, suppose that it turns out
that 5% of your 100 mislabeled dev set examples are pictures of dogs. So, that is, if 5 out of 100
of these mislabeled dev set examples are dogs, what this means is that of the 100 examples. Of a
typical set of 100 examples you're getting wrong, even if you completely solve the dog problem,
you only get 5 out of 100 more correct. Or in other words, if only 5% of your errors are dog
pictures, then the best you could easily hope to do, if you spend a lot of time on the dog problem.
Is that your error might go down from 10% error, down to 9.5% error, right? So this a 5% relative
decrease in error, from 10% down to 9.5%. And so you might reasonably decide that this is not
the best use of your time. Or maybe it is, but at least this gives you a ceiling, a upper bound on
how much you could improve performance by working on the dog problem. In machine learning,
sometimes we call this the ceiling on performance. Which just means, what's in the best case?
How well could working on the dog problem help you?



But now, suppose something else happens. Suppose that we look at your 100 mislabeled dev set
examples, you find that 50 of them are actually dog images. So 50% of them are dog pictures.
Now you could be much more optimistic about spending time on the dog problem. In this case, if
you actually solve the dog problem, your error would go down from this 10%, down to potentially
5% error. And you might decide that halving your error could be worth a lot of effort. Focus on
reducing the problem of mislabeled dogs. I know that in machine learning, sometimes we speak
disparagingly of hand engineering things, or using too much value insight. But if you're building
applied systems, then this simple counting procedure, error analysis, can save you a lot of time.
In terms of deciding what's the most important, or what's the most promising direction to focus
on. In fact, if you're looking at 100 mislabeled dev set examples, maybe this is a 5 to 10 minute
effort. To manually go through 100 examples, and manually count up how many of them are dogs.
And depending on the outcome, whether there's more like 5%, or 50%, or something else. This, in
just 5 to 10 minutes, gives you an estimate of how worthwhile this direction is and could help you
make a much better decision, whether or not to spend the next few months focused on trying to
find solutions to solve the problem of mislabeled dogs. In this section, we'll describe using error
analysis to evaluate whether or not a single idea, dogs in this case, is worth working on.
Sometimes you can also evaluate multiple ideas in parallel doing error analysis. 
    For example, let's say you have several ideas in improving your cat detector. Maybe you can
improve performance on dogs? Or maybe you notice that sometimes, what are called great cats,
such as lions, panthers, cheetahs, and so on. That they are being recognized as small cats, or
house cats. So you could maybe find a way to work on that. Or maybe you find that some of your
images are blurry, and it would be nice if you could design something that just works better on
blurry images and maybe you have some ideas on how to do that. So if carrying out error analysis
to evaluate these three ideas, what I would do is create a table like this and I usually do this in a
spreadsheet, but using an ordinary text file will also be okay and on the left side, this goes
through the set of images you plan to look at manually. So this maybe goes from 1 to 100, if you
look at 100 pictures. And the columns of this table, of the spreadsheet, will correspond to the
ideas you're evaluating. So the dog problem, the problem of great cats, and blurry images. And I
usually also leave space in the spreadsheet to write comments. So remember, during error
analysis, you're just looking at dev set examples that your algorithm has misrecognized. So if you
find that the first misrecognized image is a picture of a dog, then I'd put a check mark there. And
to help myself remember these images, sometimes I'll make a note in the comments. So maybe
that was a pit bull picture. If the second picture was blurry, then make a note there. If the third
one was a lion, on a rainy day, in the zoo that was misrecognized. Then that's a great cat, and the
blurry data. Make a note in the comment section, rainy day at zoo, and it was the rain that made
it blurry, and so on. Then finally, having gone through some set of images, I would count up what
percentage of these algorithms. Or what percentage of each of these error categories were
attributed to the dog, or great cat, blurry categories. So maybe 8% of these images you examine
turn out be dogs, and maybe 43% great cats, and 61% were blurry. So this just means going
down each column, and counting up what percentage of images have a check mark in that
column. As you're part way through this process, sometimes you notice other categories of
mistakes. So, for example, you might find that Instagram style filter, those fancy image filters, are
also messing up your classifier. In that case, it's actually okay, part way through the process, to
add another column like that. For the multi-colored filters, the Instagram filters, and the Snapchat
filters. And then go through and count up those as well, and figure out what percentage comes
from that new error category. 



    The conclusion of this process gives you an estimate of how worthwhile it might be to work on
each of these different categories of errors. For example, clearly in the example (see diagram
above), a lot of the mistakes we made on blurry images, and quite a lot on were made on great
cat images. And so the outcome of this analysis is not that you must work on blurry images. This
doesn't give you a rigid mathematical formula that tells you what to do, but it gives you a sense of
the best options to pursue. It also tells you, for example, that no matter how much better you do
on dog images, or on Instagram images. You at most improve performance by maybe 8%, or
12%, in these examples. Whereas you can to better on great cat images, or blurry images, the
potential improvement. Now there's a ceiling in terms of how much you could improve
performance, is much higher. So depending on how many ideas you have for improving
performance on great cats, on blurry images. Maybe you could pick one of the two, or if you have
enough personnel on your team, maybe you can have two different teams. Have one work on
improving errors on great cats, and a different team work on improving errors on blurry images.
But this quick counting procedure, which you can often do in, at most, small numbers of hours.
Can really help you make much better prioritization decisions, and understand how promising
different approaches are to work on. 
    So to summarize, to carry out error analysis, you should find a set of mislabeled examples,
either in your dev set, or in your development set. And look at the mislabeled examples for false
positives and false negatives. And just count up the number of errors that fall into various
different categories. During this process, you might be inspired to generate new categories of
errors, like we saw. If you're looking through the examples and you say gee, there are a lot of
Instagram filters, or Snapchat filters, they're also messing up my classifier. You can create new
categories during that process. But by counting up the fraction of examples that are mislabeled in
different ways, often this will help you prioritize. Or give you inspiration for new directions to go
in. Now as you're doing error analysis, sometimes you notice that some of your examples in your
dev sets are mislabeled, we'll discuss that in next section.

Cleaning up incorrectly labeled data
 The data for your supervised learning problem comprises input X and output labels Y. What if you
going through your data and you find that some of these output labels Y are incorrect, you have



data which is incorrectly labeled? Is it worth your while to go in to fix up some of these labels?
Let's take a look. In the cat classification problem, Y equals one for cats and zero for non cats. 

    So if you find that your data has some incorrectly labeled examples, what should you do? Well,
first, let's consider the training set. It turns out that deep learning algorithms are quite robust to
random errors in the training set. So as long as your errors or your incorrectly labeled examples,
so as long as those errors are not too far from random, maybe sometimes the labeler just wasn't
paying attention or they accidentally, randomly hit the wrong key on the keyboard. If the errors
are reasonably random, then it's probably okay to just leave the errors as they are and
not spend too much time fixing them. There's certainly no harm to going into your training set
and be examining the labels and fixing them. Sometimes that is worth doing but your effort might
be okay even if you don't. So as long as the total data set size is big enough and the actual
percentage of errors is maybe not too high. So I see a lot of machine learning algorithms that
trained even when we know that there are few X mistakes in the training set labels and usually
works okay. There is one caveat to this which is that deep learning algorithms are robust to
random errors. They are less robust to systematic errors. So for example, if your labeler
consistently labels white dogs as cats, then that is a problem because your classifier will learn to
classify all white colored dogs as cats. But random errors or near random errors are usually not
too bad for most deep learning algorithms. Now, this discussion has focused on what to do about
incorrectly labeled examples in your training set. How about incorrectly labeled examples in your
dev set or test set? If you're worried about the impact of incorrectly labeled examples on your dev
set or test set, what they recommend you do is during error analysis to add one extra column so
that you can also count up the number of examples where the label Y was incorrect. So for
example, maybe when you count up the impact on a 100 mislabeled dev set examples, so you're
going to find a 100 examples where your classifier's output disagrees with the label in your dev
set. And sometimes for a few of those examples, your classifier disagrees with the label because
the label was wrong, rather than because your classifier was wrong.



    So maybe in this example, you find that the labeler missed a cat in the background. So put the
check mark there to signify that example 98 had an incorrect label. And maybe for this one, the
picture is actually a picture of a drawing of a cat rather than a real cat. Maybe you want the
labeler to have labeled that Y equals zero rather than Y equals one. And so put another check
mark there. And just as you count up the percent of errors due to other categories like we saw in
the previous video, you'd also count up the fraction of percentage of errors due to incorrect labels.
Where the Y value in your dev set was wrong and that accounted for why your learning algorithm
made a prediction that differed from what the label on your data says. So the question now is, is it
worthwhile going in to try to fix up this 6% of incorrectly labeled examples. My advice is, if it
makes a significant difference to your ability to evaluate algorithms on your dev set, then go
ahead and spend the time to fix incorrect labels. But if it doesn't make a significant difference to
your ability to use the dev set to evaluate cost buyers, then it might not be the best use of your
time. 



Let me show you an example that illustrates what I mean by this. So, three numbers I
recommend you look at to try to decide if it's worth going in and reducing the number of
mislabeled examples are the following. I recommend you look at the overall dev set error. And so
in the example we had from the previous video, we said that maybe our system has 90% overall
accuracy. So 10% error. Then you should look at the number of errors or the percentage of errors
that are due to incorrect labels. So it looks like in this case, 6% of the errors are due to incorrect
labels. So 6% of 10% is 0.6%. And then you should look at errors due to all other causes. So if
you made 10% error on your dev set and 0.6% of those are because the labels is wrong, then the
remainder, 9.4% of them, are due to other causes such as misrecognizing dogs being cats, great
cats and their images. So in this case, I would say there's 9.4% worth of error that you could
focus on fixing, whereas the errors due to incorrect labels is a relatively small fraction of the
overall set of errors. So by all means, go in and fix these incorrect labels if you want but it's
maybe not the most important thing to do right now. Now, let's take another example. Suppose
you've made a lot more progress on your learning problem. So instead of 10% error, let's say you
brought the errors down to 2%, but still 0.6% of your overall errors are due to incorrect labels. So
now, if you want to examine a set of mislabeled dev set images, set that comes from just 2% of
dev set data you're mislabeling, then a very large fraction of them, 0.6 divided by 2%, so that is
actually 30% rather than 6% of your labels. Your incorrect examples are actually due to
incorrectly label examples. And so errors due to other causes are now 1.4%. When such a high
fraction of your mistakes as measured on your dev set due to incorrect labels, then it maybe
seems much more worthwhile to fix up the incorrect labels in your dev set. And if you remember
the goal of the dev set, the main purpose of the dev set is, you want to really use it to help you
select between two classifiers A and B. So you're trying out two classifiers A and B, and one has
2.1% error and the other has 1.9% error on your dev set. But you don't trust your dev set
anymore to be correctly telling you whether this classifier is actually better than this because your
0.6% of these mistakes are due to incorrect labels. Then there's a good reason to go in and fix the
incorrect labels in your dev set. Because in this example on the right is just having a very large
impact on the overall assessment of the errors of the algorithm, whereas example on the left, the
percentage impact is having on your algorithm is still smaller. Now, if you decide to go into a dev
set and manually re-examine the labels and try to fix up some of the labels, here are a few
additional guidelines or principles to consider. First, I would encourage you to apply whatever
process you apply to both your dev and test sets at the same time. We've talk previously about
why you want to dev and test sets to come from the same distribution. The dev set is tagging you
into target and when you hit it, you want that to generalize to the test set. So your team really



works more efficiently to dev and test sets come from the same distribution. So if you're going in
to fix something on the dev set, I would apply the same process to the test set to make sure that
they continue to come from the same distribution. So we hire someone to examine the labels
more carefully.     
    Do that for both your dev and test sets. Second, I would urge you to consider examining
examples your algorithm got right as well as ones it got wrong. It is easy to look at the examples
your algorithm got wrong and just see if any of those need to be fixed. But it's possible that there
are some examples that you haven't got right, that should also be fixed. And if you only fix ones
that your algorithms got wrong, you end up with more bias estimates of the error of your
algorithm. It gives your algorithm a little bit of an unfair advantage. We just try to double check
what it got wrong but you don't also double check what it got right because it might have gotten
something right, that it was just lucky on fixing the label would cause it to go from being right to
being wrong, on that example. The second bullet isn't always easy to do, so it's not always done.
The reason it's not always done is because if you classifier's very accurate, then it's getting fewer
things wrong than right. So if your classifier has 98% accuracy, then it's getting 2% of things
wrong and 98% of things right. So it's much easier to examine and validate the labels on 2% of
the data and it takes much longer to validate labels on 98% of the data, so this isn't always done.
That's just something to consider. 
    Finally, if you go into a dev and test data to correct some of the labels there, you may or may
not decide to go and apply the same process for the training set. Remember we said that at this
other section that it's actually less important to correct the labels in your training set. And
it's quite possible you decide to just correct the labels in your dev and test set which are also
often smaller than a training set and you might not invest all that extra effort needed to correct
the labels in a much larger training set. This is actually okay. Learning algorithms are quite robust
to that. It's super important that your dev and test sets come from the same distribution. But if
your training set comes from a slightly different distribution, often that's a pretty reasonable thing
to do.So couple of advice, First, deep learning researchers sometimes like to say things like, "I
just fed the data to the algorithm. I trained in and it worked." There is a lot of truth to that in the
deep learning error. There is more of feeding data in algorithm and just training it and doing less
hand engineering and using less human insight. But I think that in building practical systems,
often there's also more manual error analysis and more human insight that goes into the systems
than sometimes deep learning researchers like to acknowledge. Second is that somehow I've seen
some engineers and researchers be reluctant to manually look at the examples. Maybe it's not the
most interesting thing to do, to sit down and look at a 100 or a couple hundred examples to
counter the number of errors. But this is something that I so do myself. When I'm leading a
machine learning team and I want to understand what mistakes it is making, I would actually go
in and look at the data myself and try to counter the fraction of errors. And I think that because
these minutes or maybe a small number of hours of counting data can really help you prioritize
where to go next. I find this a very good use of your time and I urge you to consider doing it if
those machines are in your system and you're trying to decide what ideas or what directions to
prioritize things.

Build your first system, quickly, then iterate
    If you're working on a brand new machine learning application, one of the piece of advice I
often give people is that, I think you should build your first system quickly and then iterate. Let
me show you what I mean. I've worked on speech recognition for many years. And if you're
thinking of building a new speech recognition system, there's actually a lot of directions you could
go and a lot of things you could prioritize. For example, there are specific techniques for making
speech recognition systems more robust to noisy background. 



And noisy background could mean cafe noise, like a lot of people talking in the background or car
noise, the sounds of cars and highways or other types of noise. There are ways to make a speech
recognition system more robust to accented speech. There are specific problems associated with
speakers that are far from the microphone, this is called far-field speech recognition. Young
children speech poses special challenges, both in terms of how they pronounce individual words as
well as their choice of words and the vocabulary they tend to use. And if sometimes the speaker
stutters or if they use nonsensical phrases like oh, ah, um, there are different choices and
different techniques for making the transcript that you output, still read more fluently. So, there
are these and many other things you could do to improve a speech recognition system. And more
generally, for almost any machine learning application, there could be 50 different directions you
could go in and each of these directions is reasonable and would make your system better. But the
challenge is, how do you pick which of these to focus on. And even though I've worked in speech
recognition for many years, if I'm building a new system for a new application domain, I would still
find it maybe a little bit difficult to pick without spending some time thinking about the problem.
So what we recommend you do, if you're starting on building a brand new machine learning
application, is to build your first system quickly and then iterate. What I mean by that is I
recommend that you first quickly set up a dev/test set and metric. So this is really
deciding where to place your target. And if you get it wrong, you can always move it
later, but just set up a target somewhere. And then I recommend you build an initial
machine learning system quickly. Find the training set, train it and see. Start to see and
understand how well you're doing against your dev/test set and your values and metric. When
you build your initial system, you then be able to use bias/variance analysis which we
talked about earlier as well as error analysis which we talked about just in the last several
sections, to prioritize the next steps. In particular, if error analysis causes you to realize that a lot
of the errors are from the speaker being very far from the microphone, which causes special
challenges to speech recognition, then that will give you a good reason to focus on techniques to
address this called far-field speech recognition which basically means handling when the
speaker is very far from the microphone. Of all the value of building this initial system, it can be a
quick and dirty implementation, you know, don't overthink it, but all the value of the initial system
is having some learned system, having some trained system allows you to localize bias/variance,
to try to prioritize what to do next, allows you to do error analysis, look at some mistakes, to
figure out all the different directions you can go in, which ones are actually the most worthwhile. 



    So to recap, what I recommend you do is build your first system quickly, then iterate. This
advice applies less strongly if you're working on an application area in which you have significant
prior experience. It also implies to build less strongly if there's a significant body of academic
literature that you can draw on for pretty much the exact same problem you're building. So, for
example, there's a large academic literature on face recognition. And if you're trying to build a
face recognizer, it might be okay to build a more complex system from the get-go by building on
this large body of academic literature. But if you are tackling a new problem for the first time,
then I would encourage you to really not overthink or not make your first system too complicated.
Well, just build something quick and dirty and then use that to help you prioritize how to improve
your system. So I've seen a lot of machine learning projects and I've seen some teams over-think
the solution and build something too complicated. I've also seen some teams under-think and then
build something maybe too simple. Well on average, I've seen a lot more teams over-think and
build something too complicated.

Mismatched training and dev/test set
Training and testing on different distributions
    Deep learning algorithms have a huge hunger for training data. They just often work best when
you can find enough label training data to put into the training set. This has resulted in many
teams sometimes taking whatever data you can find and just shoving it into the training set just
to get it more training data. Even if some of this data, or even maybe a lot of this data, doesn't
come from the same distribution as your dev and test data. So in a deep learning era, more and
more teams are now training on data that comes from a different distribution than your dev and
test sets. And there's some subtleties and some best practices for dealing with when you're
training and test distributions differ from each other. Let's take a look. Let's say that you're
building a mobile app where users will upload pictures taken from their cell phones, and you want
to recognize whether the pictures that your users upload from the mobile app is a cat or not. So
you can now get two sources of data. One which is the distribution of data you really care about,
this data from a mobile app like that on the right, which tends to be less professionally shot, less
well framed, maybe even blurrier because it's shot by amateur users. The other source of data you
can get is you can crawl the web and just download a lot of, for the sake of this example, let's say
you can download a lot of very professionally framed, high resolution, professionally taken images
of cats. And let's say you don't have a lot of users yet for your mobile app. So maybe you've
gotten 10,000 pictures uploaded from the mobile app. But by crawling the web you can download
huge numbers of cat pictures, and maybe you have 200,000 pictures of cats downloaded off the
Internet.



So what you really care about is that your final system does well on the mobile app distribution of
images, right? Because in the end, your users will be uploading pictures like those on the right and
you need your classifier to do well on that. But you now have a bit of a dilemma because you have
a relatively small dataset, just 10,000 examples drawn from that distribution. And you have a
much bigger dataset that's drawn from a different distribution. There's a different appearance of
image than the one you actually want. So you don't want to use just those 10,000 images because
it ends up giving you a relatively small training set and using those 200,000 images seems helpful,
but the dilemma is this 200,000 images isn't from exactly the distribution you want. So what can
you do? Well, here's one option. One thing you can do is put both of these data sets together so
you now have 210,000 images. And you can then take the 210,000 images and randomly shuffle
them into a train, dev, and test set. And let's say for the sake of argument that you've decided
that your dev and test sets will be 2,500 examples each. So your training set will be 205,000
examples.
Now so set up your data this way has some advantages but also disadvantages. The advantage is
that now you're training, dev and test sets will all come from the same distribution, so that makes
it easier to manage. But the disadvantage, and this is a huge disadvantage, is that if you look at
your dev set, of these 2,500 examples, a lot of it will come from the web page distribution of
images, rather than what you actually care about, which is the mobile app distribution of images.

 So it turns out that of your total amount of data, 200,000 or 200k, out of 210,000 or 210k, that
comes from web pages. So all of these 2,500 examples on expectation, I think 2,381 of them will
come from web pages. This is on expectation, the exact number will vary around depending on
how the random shuttle operation went. But on average, only 119 will come from mobile app
uploads.

 So remember that setting up your dev set is telling your team where to aim the target and the
way you're aiming your target, you're saying spend most of the time optimizing for the web page
distribution of images, which is really not what you want.

 So I would recommend against option one, because this is setting up the dev set to tell your team
to optimize for a different distribution of data than what you actually care about.

 So instead of doing this, I would recommend that you instead take another option, which is the
following. The training set, let's say it's still 205,000 images, I would have the training set have all
200,000 images from the web. And then you can, if you want, add in 5,000 images from the



mobile app. And then for your dev and test sets, I guess my data sets size aren't drawn to scale.
Your dev and test sets would be all mobile app images.

 So the training set will include 200,000 images from the web and 5,000 from the mobile app. The
dev set will be 2,500 images from the mobile app, and the test set will be 2,500 images also from
the mobile app. The advantage of this way of splitting up your data into train, dev, and test, is
that you're now aiming the target where you want it to be. You're telling your team, my dev set
has data uploaded from the mobile app and that's the distribution of images you really care about,
so let's try to build a machine learning system that does really well on the mobile app distribution
of images. The disadvantage, of course, is that now your training distribution is different from your
dev and test set distributions. But it turns out that this split of your data into train, dev and test
will get you better performance over the long term. And we'll discuss later some specific
techniques for dealing with your training sets coming from different distribution than your dev and
test sets. 
    Let's look at another example. Let's say you're building a brand new product, a speech
activated rearview mirror for a car. So this is a real product in China. It's making its way into other
countries but you can build a rearview mirror to replace this little thing there, so that you can now
talk to the rearview mirror and basically say, dear rearview mirror, please help me find
navigational directions to the nearest gas station and it'll deal with it.

 

    So how can you get data to train up a speech recognition system for this product? Well, maybe
you've worked on speech recognition for a long time so you have a lot of data from other speech
recognition applications, just not from a speech activated rearview mirror. Here's how you could
split up your training and your dev and test sets. So for your training, you can take all the speech
data you have that you've accumulated from working on other speech problems, such as data you
purchased over the years from various speech recognition data vendors. And today you can
actually buy data from vendors of x, y pairs, where x is an audio clip and y is a transcript. Or
maybe you've worked on smart speakers, smart voice activated speakers, so you have some data
from that. Maybe you've worked on voice activated keyboards and so on. And for the sake of
argument, maybe you have 500,000 utterences from all of these sources. And for your dev and
test set, maybe you have a much smaller data set that actually came from a speech activated
rearview mirror because users are asking for navigational queries or trying to find directions to
various places. This data set will maybe have a lot more street addresses, right? Please help me



navigate to this street address, or please help me navigate to this gas station. So this distribution
of data will be very different than these on the left but this is really the data you care about,
because this is what you need your product to do well on, so this is what you set your dev and
test set to be. So what you do in this example is set your training set to be the 500,000
utterances on the left, and then your dev and test sets which I'll abbreviate D and T, these could
be maybe 10,000 utterances each. That's drawn from actual the speech activated rearview mirror.
Or alternatively, if you think you don't need to put all 20,000 examples from your speech activated
rearview mirror into the dev and test sets, maybe you can take half of that and put that in the
training set. So then the training set could be 510,000 utterances, including all 500 from there and
10,000 from the rearview mirror and then the dev and test sets could maybe be 5,000 utterances
each. So of the 20,000 utterances, maybe 10k goes into the training set and 5k into the dev set
and 5,000 into the test set. So this would be another reasonable way of splitting your data into
train, dev, and test and this gives you a much bigger training set, over 500,000 utterances, than if
you were to only use speech activated rearview mirror data for your training set. So in this
video, you've seen a couple examples of when allowing your training set data to come from a
different distribution than your dev and test set allows you to have much more training data and in
these examples, it will cause your learning algorithm to perform better. Now one question you
might ask is, should you always use all the data you have? The answer is subtle, it is not always
yes in next section will see a counter example.
Summary diagram:



Bias and Variance with mismatched data distributions
Estimating the bias and variance of your learning algorithm really helps you prioritize what to work
on next. But the way you analyze bias and variance changes when your training set comes from a
different distribution than your dev and test sets. Let's see how.



Addressing data mismatch
     If your training set comes from a different distribution, than your dev and test set, and if error

analysis shows you that you have a data mismatch problem, what can you do? There are
completely systematic solutions to this, but let's look at some things you could try. If I find that I
have a large data mismatch problem, what I usually do is carry out manual error analysis and try
to understand the differences between the training set and the dev/test sets. To avoid overfitting
the test set, technically for error analysis, you should manually only look at a dev set and not at
the test set. But as a concrete example, if you're building the speech-activated rear-view mirror



application, you might look or, I guess if it's speech, listen to examples in your dev set to try to
figure out how your dev set is different than your training set. So, for example, you might find
that a lot of dev set examples are very noisy and there's a lot of car noise. And this is one way
that your dev set differs from your training set. And maybe you find other categories of errors. For
example, in the speech-activated rear-view mirror in your car, you might find that it's often mis-
recognizing street numbers because there are a lot more navigational queries which will have
street address. So, getting street numbers right is really important. When you have insight into
the nature of the dev set errors, or you have insight into how the dev set may be different or
harder than your training set, what you can do is then try to find ways to make the training data
more similar. Or, alternatively, try to collect more data similar to your dev and test sets. So, for
example, if you find that car noise in the background is a major source of error, one thing you
could do is simulate noisy in-car data. So a little bit more about how to do this on the next slide.
Or you find that you're having a hard time recognizing street numbers, maybe you can go and
deliberately try to get more data of people speaking out numbers and add that to your training
set.  So, if your goal is to make the training data more similar to your dev set, what are some
things you can do? One of the techniques you can use is artificial data synthesis. 
    So, to summarize, if you think you have a data mismatch problem, I recommend you do error
analysis, or look at the training set, or look at the dev set to try this figure out, to try to gain
insight into how these two distributions of data might differ. And then see if you can find some
ways to get more training data that looks a bit more like your dev set. One of the ways we talked
about is artificial data synthesis and artificial data synthesis does work. In speech recognition,
I've seen artificial data synthesis significantly boost the performance of what were already very
good speech recognition system. So, it can work very well. But, if you're using artificial data
synthesis, just be cautious and bear in mind whether or not you might be accidentally simulating
data only from a tiny subset of the space of all possible examples. 

Learning from multiple tasks
Transfer learning
    One of the most powerful ideas in deep learning is that sometimes you can take knowledge the
neural network has learned from one task and apply that knowledge to a separate task. So for
example, maybe you could have the neural network learn to recognize objects like cats and then
use that knowledge or use part of that knowledge to help you do a better job reading x-ray scans.
This is called transfer learning. 



Multi-task learning
    So whereas in transfer learning, you have a sequential process where you learn from task A and
then transfer that to task B. In multi-task learning, you start off simultaneously, trying to have
one neural network do several things at the same time and then each of these task helps hopefully
all of the other task. Let's look at an example. Let's say you're building an autonomous vehicle,
building a self driving car. Then your self driving car would need to detect several different things
such as pedestrians, detect other cars, detect stop signs and also detect traffic lights and also
other things.



    



    So what a researcher, Rich Carona, found many years ago was that the only times multi-task
learning hurts performance compared to training separate neural networks is if your neural
network isn't big enough. But if you can train a big enough neural network, then multi-task
learning certainly should not or should very rarely hurt performance. And hopefully it will actually
help performance compared to if you were training neural networks to do these different tasks in
isolation. So that's it for multi-task learning. In practice, multi-task learning is used much less
often than transfer learning. I see a lot of applications of transfer learning where you have a
problem you want to solve with a small amount of data. So you find a related problem with a lot of
data to learn something and transfer that to this new problem. But multi-task learning is just more
rare that you have a huge set of tasks you want to use that you want to do well on, you can train
all of those tasks at the same time. Maybe the one example is computer vision. In object detection
I see more applications of multi-task any where one neural network trying to detect a whole bunch
of objects at the same time works better than different neural networks trained separately to
detect objects. But I would say that on average transfer learning is used much more today than
multi-task learning, but both are useful tools to have in your arsenal. 
    So to summarize, multi-task learning enables you to train one neural network to do many tasks
and this can give you better performance than if you were to do the tasks in isolation. Now one
note of caution, in practice I see that transfer learning is used much more often than multi-task
learning. So I do see a lot of tasks where if you want to solve a machine learning problem but you
have a relatively small data set, then transfer learning can really help. Where if you find a related
problem but you have a much bigger data set, you can train in your neural network from there
and then transfer it to the problem where we have very low data. So transfer learning is used a lot
today. There are some applications of transfer multi-task learning as well, but multi-task learning I
think is used much less often than transfer learning. And maybe the one exception is computer
vision object detection, where I do see a lot of applications of training a neural network to detect
lots of different objects. And that works better than training separate neural networks and
detecting the visual objects. But on average I think that even though transfer learning and multi-
task learning often you're presented in a similar way, in practice I've seen a lot more applications
of transfer learning than of multi-task learning. I think because often it's just difficult to set up or
to find so many different tasks that you would actually want to train a single neural network for.
Again, with some sort of computer vision, object detection examples being the most notable
exception. So that's it for multi-task learning. Multi-task learning and transfer learning are both
important tools to have in your tool bag. 

End-to-end deep learning
What is end-to-end deep learning?
    One of the most exciting recent developments in deep learning, has been the rise of end-to-end
deep learning. So what is the end-to-end learning? Briefly, there have been some data processing
systems, or learning systems that require multiple stages of processing. And what end-to-end
deep learning does, is it can take all those multiple stages, and replace it usually with just a single
neural network.



 
Whether to use end-to-end deep learning
    Let's say in building a machine learning system you're trying to decide whether or not to use an
end-to-end approach. Let's take a look at some of the pros and cons of end-to-end deep learning
so that you can come away with some guidelines on whether or not an end-to-end approach
seems promising for your application. Here are some of the benefits of applying end-to-end
learning. First is that end-to-end learning really just lets the data speak. So if you have enough
X,Y data then whatever is the most appropriate function mapping from X to Y, if you train a big
enough neural network, hopefully the neural network will figure it out. And by having a pure
machine learning approach, your neural network learning input from X to Y may be more able to
capture whatever statistics are in the data, rather than being forced to reflect human
preconceptions.
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