Prognostic Analytics for Predictive Maintenance, a case study

First, let’s try to understand the difference between prognostic analysis and predictive analysis. Predictive analysis tells that something is going to fail in future whereas Prognostic analysis tells that something is going to fail says in next some days/weeks/months. so there is always a time dimension factor in the prognostic analysis. Prognostic analysis can help in planning things in advance before the system actually fails results in saving resources and time. Let elaborate further with a case study.

Case Study: Let’s take a case where we want to use Prognostic Analytics for Predictive Maintenance in IoT based Systems in large plants e.g.; aviation, oil & gas, big manufacturer, etc. Running a prognostic model can help in finding out that performance of which controls system is degrading by analyzing the key sensor data of the past which can give an early sign that the system may go down and one can take precaution which can result in a big saving. The control systems which also include sensor infrastructure used in heavy industries generate tons-tons of data continuously and most of the time the data is decades-old, so basically companies stores the data but get never used. So there is a huge opportunity for heavy manufacturers to use the past data to get a good insight into the different parts of the system.

Technically, ML team can make a pipeline and stream the data which is coming out of the control system as it works and stream to a cloud-like AWS/Google/Azure or private cloud and then ML models can be run to check for the abnormalities and preventive maintenance can be planned. For an example, if you in a power plant and some crucial parts fails then someone from the supplier has to rush, take a plane and deliver and install which costs a lot of money but if we start doing the prognostic analysis we can get an early sign of which parts might fail and can procure.

Just to summarise, we can use the old data of the system/putting new data to the cloud and make preventive/prognostic analysis which can save money, resources and time.

References-Thanks: Dr. Harpreet Singh, I heard him on a podcast and highly impressed by his vision on data science and different use cases.

Debugging a crucial skill but very rarely taught

Listening on software engineering radio podcast Diomidis Spinellis mentions how debugging is so much important in software development but still, we don’t teach much in-depth this skill in our universities. I and believe any other programmer will agree that debugging tools are the key arsenal in fixing bugs and even understanding the system.

Either you use modern tools or just by basic print/printf statements that don’t matter. Students should learn these key skills and professors should emphasize on educating and not only in universities even in industry set-up when a new developer joins in there should be good exposure to debugging so that they dissect code base and become productive fast.

Worth considering I think …

What do you think? Please share in comments.

Outliers with Pankaj Mishra: podcast on entrepreneurship

Found this interesting podcast focusing on the Indian IT landscape, start-up, journey and entrepreneurship in general. The bio says ” A podcast about the ones who chose to take the road not taken often. It’s about the crazy and the curious. Those that dared to stand out, and stand-alone. It’s about their journey through hope and disillusionment, failures and pitfalls, joy and success, pain and bliss. It’s a candid exploration of experiences and ideas that have driven some of the shining stars, told as is.

So far I have listened to a couple of them and found an enriching conversation.

Happy listening!